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I Summary 
X-ray photoelectron spectroscopy (XPS) analysis and 

sliding friction experiments were conducted to determine 
the surface chemistry and friction properties of nickel- 
zinc (Ni-Zn) and manganese-zinc (Mn-Zn) ferrites. 
Sliding friction experiments were conducted in ultrahigh 
vacuum with Ni-Zn and Mn-Zn ferrite flats in contact 
with various transition metal riders at room temperature. 
The effect of adsorbed oxygen on friction was also 
examined. 

The results of the investigation indicate that Ni2O3 and 

to nominal constituents such as NiO(NiFe204), ZnO, and 
Fez03 and that MnO2 and Fe304 are present on the Mn- 
Zn ferrite surface in addition to nominal constituents 
such as MnO, ZnO, and Fe2O3. The coefficients of 
friction for Ni-Zn and Mn-Zn ferrites in contact with 
various transition metals are related to the relative 
chemical activity of these metals: the more active the 
metal, the higher is the coefficient of friction. The 
coefficients of friction for the ferrites correlate with the 
free energy of formation of the lowest metal oxide. The 
interfacial bond can be regarded as a chemical bond 
between the metal atoms and the oxygen anions in the 
ferrite surfaces. The adsorption of oxygen on cleaned 
metal and ferrite surfaces increases the coefficients of 
friction for both the Ni-Zn and Mn-Zn ferrite-metal 
interfaces. 

d 
Fe304 are present on the Ni-Zn ferrite surface in addition 

I ,  Introduction 

An important subsystem of any computer or commu- 
nication equipment is its memory or storage function. 
During the various stages of the computation or com- 

temporarily or permanently computer results for use in 
later calculations or to store communication information 
that must be referred to over a long period of time. 
Among the many physical possibilities that are available 
to perform these storage functions are magnetic tape, 

recirculating delay lines, and thin magnetic films. 

I munication procedure it is necessary either to store 
I 

I magnetic disk, magnetic drum, photographic film, 

Magnetic recording has been developed to a highly 

applied to any recording technique in which some phase 
of magnetics is intimately associated with either the 
recording or playback process. 

Both Ni-Zn and Mn-Zn ferrites are ceramic semi- 
conductors and are becoming increasingly important as 
magnetic materials used for highly developed magnetic 
recording devices. The Ni-Zn ferrites have been used for 
computer memory systems, such as magnetic recording 
disk files; the Mn-Zn ferrites have been used for video 
and audio tape recorders in order to enhance certain 

t refined system. The term “magnetic recording” can be 

desirable properties and to suppress undesirable ones in 
certain applications. In most devices of magnetic 
recording and playback, recording is conducted with a 
magnetic head (slider) in sliding or intermittent contact 
with a magnetic medium, such as a magnetic tape or disk. 
A small amount of wear of the magnetic head and 
medium may render the recording process unreliable. The 
magnetic head and medium therefore must have good 
wear resistance and low friction. 

The tribological properties of ferrites have been exten- 
sively studied, and considerable information is available 
(refs. 1 to 21). It must be stressed, however, that many of 
the observed fundamental properties and effects are not 
completely understood. 

Miyoshi and Buckley commenced fundamental studies 
on the friction and wear behavior of single-crystal Mn-Zn 
ferrite in order to gain an understanding of the 
tribological properties of ferrites (refs. 22 to 24). The 
results indicated that the coefficients of friction for the 
ferrite in contact with various metals are related to the 
relative chemical activity of the metals: the more active 
the metal, the higher the coefficient of friction. The 
present study extends that work to the tribological 
properties of hot-pressed Ni-Zn and Mn-Zn ferrites in the 
polycrystalline form. 

This report discusses the surface chemistry and friction 
properties of hot-pressed, polycrystalline Ni-Zn and Mn- 
Zn ferrites in contact with various transition metals. The 
effect of adsorbed oxygen on friction is also examined. 
The surface chemistry of the ferrites was analyzed by 
X-ray photoelectron spectroscopy (XPS). Sliding friction 
experiments were conducted with both a Ni-Zn and a Mn- 
Zn ferrite specimen in contact with polycrystalline metal 
pins at room temperature. All friction experiments were 
conducted with loads of 0.05 to 0.2 N, at a sliding veloc- 
ity of 5 x 10-2 mm/sec, and in a vacuum of 30 nPa. 

Materials 
The hot-pressed polycrystalline Ni-Zn ferrite (66.6-wt ‘To 

Fe2O3, 11.1 wt ‘To NiO, and 22.2 wt 070 ZnO) and Mn-Zn 
ferrite (69.1-wt ‘To Fe2O3, 15.2-wt ‘To MnO, and 
15.7-wt 070 ZnO) are ceramic semiconductors. Compo- 
sitions are as certified by the manufacturer. 

All the metals were polycrystalline. The titanium was 
99.97 percent pure, and all the other metals (Co, Cr, Fe, 
Ni, Re, Rh, V, W, and Zr) were 99.99 percent pure. 

Apparatus and Procedure 
Apparatus 

An apparatus capable of measuring adhesion, load, 
and friction was mounted in an ultra-high-vacuum 



system (fig. 1). The vacuum system contained X-ray 
photoelectron spectroscopy. The major components 
shown in figure 1 include the electron energy analyzer, 
the X-ray source, and the ion gun used for ion sputter 
etching. The X-ray source contains a magnesium anode. 

Specimen Preparation 

The sliding surfaces of Ni-Zn and Mn-Zn ferrite flats 
were polished first with diamond powder approximately 
3 pm in diameter and then with A1203 powder 1 pm in 
diameter. The polished surfaces were smooth, bright, and 
lustrous without pitting. 

The sliding surfaces of the polycrystalline metal riders 
(pins) were hemispherical and were polished first with 
diamond powder 3 pm in diameter and then with A1203 
powder 1 pm in diameter. The radius of curvature of the 
metal riders was 0.79 mm. 

Procedure 

The surfaces of the flat and rider specimens were rinsed 
with absolute ethanol before the experiments. For the 
experiments in vacuum the specimens were placed in the 
vacuum chamber, and the system was evacuated and 
baked out to achieve a pressure of 30 nPa (10-10 torr). 
The flat and rider specimens were ion sputter cleaned. 
Ion sputter etching was performed with a beam energy of 
3000 electron volts (eV) at 20-mA beam current with an 
argon pressure of 7 x 10-4 Pa. The ion beam was 
continuously rastered over the specimen surface. After 
sputter etching the system was reevacuated to a pressure 
of 30 nPa or lower. The surface cleanliness was verified 
by XPS analysis. 

In situ friction experiments were conducted with the 
sputter-cleaned ferrite flat and metal rider specimens. A 
load of 0.05 to 0.2 N was applied to the rider-flat contact 
by deflecting the beam, as shown in figure 1. To obtain 
consistent experimental conditions, the time in contact 
before sliding was 30 sec. Both load and friction forces 
were continuously monitored during a friction experi- 
ment. Sliding velocity was 5 x 10-2 mm/sec, with a total 
sliding distance of 2 to 3 mm. The coefficients of friction 
reported herein were obtained by averaging three to five 
measurements. The standard deviations of the measured 
values are within 4 percent of the mean value. 

In those experiments designed to examine the effect of 
adsorbed oxygen on friction, atomically sputter-cleaned 
ferrite and metal surfaces were exposed to 1000 L 
(L = 1 x 10-6 torr sec) of 0 2  with an oxygen pressure of 
1 x 10-6 torr. At completion of the exposure the vacuum 
system was reevacuated to a pressure of 30 nPa or lower. 
The surface chemistry of the specimens was examined by 
XPS analysis. Friction experiments were conducted with 
the ferrite and metal specimens that were exposed to 
oxygen in the same manner as with atomically clean 
specimens. 

The instrument was calibrated regularly. The analyzer 
calibration was determined by assuming the binding 
energy for the gold 4f 712 peak to be 83.8 eV. All survey 
spectra, scans of 1000 or 1100 eV, were taken at a pass 
energy of 50 eV, which provided an instrumentation 
resolution of 1 eV at room temperature. The MgKa 
X-ray was used with an X-ray source power of 400 W (10 
kV - 40 mA). The narrow scans of individual peaks are 
just wide enough to encompass the peaks of interest and 
were obtained with a pass energy of 25 eV at room 
temperature. 

To determine accurately the energy and the shape of 
the peaks, spectra were recorded several times. The 3 

energy resolution was 2 percent of the pass energy, that 
is, 0.5 eV. The peak maxima could be located to &O. l  
eV. The reproducibility of peak height was good, and the 
probable error in the peak heights ranged from &2 to + 8  
percent. The peak ratios were generally good to &lo  
percent or less. 

> 

Results and Discussion 
Microstructure 

To establish the exact crystalline state of the Ni-Zn 
ferrite, grain boundary structures were examined by 
scanning electron microscopy, transmission electron 
microscopy, and diffraction. The transmission electron 
microscope was operated at 100 kV. 

A typical example of the structure of the Ni-Zn ferrite 
surface as chemically etched with an HCl solution at 
50" C is shown in figure 2. The etched surface contained 
grain boundaries, pits, and scratches. Grain size was 
obtained by averaging the measurements of 50 grains or 
more in scanning electron micrographs. The grain size of 
the Ni-Zn ferrite was about 8 pm.The grain size of Mn- 
Zn ferrite was about 24 pm. 

Typical examples of the grain boundary microstructure 
of the Ni-Zn ferrite examined by transmission electron 
microscopy and diffraction are shown in figures 3 to 5. 
(The Ni-Zn ferrite specimens were thinned by ion ., 

etching.) Clear grain boundaries were observed, as shown 
in figures 3 to 5. Grain boundaries that were nearly 

(fig. 3). Grain boundaries that were not perpendicular 
to the ferrite surface contained parallel fringes (figs. 4 
and 5). 

Single-crystal patterns taken from a grain included 
diffraction spots and Kikuchi lines, as indicated in figures 
3 to 5. 

The ion-etched Ni-Zn ferrite specimens have different 
etch patterns reflecting different crystallographic 
orientations of the grains. The etch patterns are related to 
the anisotropic etching rate of the grain surface. 

perpendicular to the ferrite surface contained single lines -3 
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Energy-dispersive X-ray analysis was conducted on 
the Ni-Zn ferrite. Figure 6 presents a typical energy- 
dispersive X-ray profile of this ferrite. The profile clearly 
indicates iron, nickel, and zinc. 

Surface treatment 
in vacuum chamber 

XPS Analysis 

Ni-Zn ferrite. -The XPS survey spectra of the Ni-Zn 
ferrite surfaces obtained before sputter cleaning reveal 
primarily oxygen and carbon contamination peaks. An 
XPS spectrum of the ferrite surface after sputter cleaning 
for 20 min is shown in figure 7. The carbon 
contamination peak has nearly disappeared from the 
spectrum. In addition to oxygen and iron, the XPS peaks 
indicate nickel and zinc on the surface. 

The XPS spectra of Nizp, Znzp, Fe2p, and 01, obtained 
from narrow scans on the Ni-Zn ferrite surface are 
presented in figure 8. The Ni2p3/2 photoelectron emission 
lines of the Ni-Zn ferrite after argon sputter cleaning are 
split asymmetrically into two peaks at 853.3 and 855.0 eV 
(fig. 8(a)). The binding energies of the two peaks match 
those of both NiFe204 (or Ni2+ ion in NiO) and Ni2O3, 
respectively (refs. 25 and 26). The Z112~3/2 photoelectron 
lines for the Ni-Zn ferrite peak at 1021.7 eV (fig. 8(b)), 
which is associated with ZnO. The Fezp3/2 photoelectron 
lines peak at 710.8 eV (fig. 8(c)). The binding energy 
matches that for both Fez03 and NiFe204, which are 
extremely close in energy and difficult to distinguish in 
the data of figure 8(c). In figure 8(d), in addition to the 
adsorbed oxygen contamination peaks, the 01, peak 
associated with Fez03 is observed on the as-received Ni- 
Zn ferrite surface. The peak intensity at 530 eV 
associated with Fe2O3 increased with an increase in 
sputtering time up to 20 min. 

Table I summarizes the various constituents present on 
the Ni-Zn ferrite surface and their relative concentrations 
before and after sputtering. The relative concentrations 
of adventitious hydrocarbon, which was present on the 
as-received Ni-Zn ferrite and was introduced during the 
specimen preparation process, was about 79 at. Yo (table 
I(a)). After sputtering no carbon was evident on the Ni- 
Zn ferrite surface. The concentrations of nickel oxides 
(NiO and Ni2O3), ZnO, and Fez03 on the Ni-Zn ferrite 
surface as obtained from the XPS spectra are interesting 
in that on the surface after sputtering the concentration 
of ZnO is less than that of nickel oxides, while in the bulk 
the concentration of ZnO is greater than that of nickel 
oxides (table I). The results suggest that zinc may 
segregate and be sputtered away from the surface during 
argon ion sputtering. 

Mn-Zn ferrite. -The XPS survey spectra of the Mn-Zn 
ferrite surface obtained before sputter cleaning reveal 
primarily oxygen and carbon contamination peaks, as 
shown in figure 9. An XPS spectrum of the ferrite surface 
after sputter cleaning for 20 min is shown in figure 9. The 
carbon contamination peak has nearly disappeared from 

Concentration, 
mol Qa 

TABLE I. -VARIOUS CONSTITUENTS ON 
Ni-Zn FERRITE SURFACE AND 

THEIR CONCENTRATIONS 

(a) Elements 

Sputtering 20 10 

I 11.5 120.0 

Surface treatment Concentration, 
in vacuum chamber at. Qo 

No treatment 

I Sputtering 9 5 30 56 0 

70 

68.4 

Surface 

j i i r  

I I 

I I I 
No treatment 1 17 I17 I 66 I 

the spectrum after sputter cleaning. In addition to oxygen 
and iron, the XPS peaks clearly indicate manganese and 
zinc on the surface. 

Figure 10 presents the XPS spectra of Mnzp, Z ~ Z ~ ,  
Fezp, and 01, obtained from narrow scans on the Mn-Zn 
ferrite surfaces. 

The Mnzp3/2 photoelectron emission lines of the Mn- 
Zn ferrite after cleaning include two peaks (fig. 10(a)). 
The binding energies of the peaks match both MnO and 
the Mn+2 ion in the oxide (MnOz)(ref. 25). The Znzp 
photoelectron lines for the Mn-Zn ferrite peak at 1021.7 
eV (fig. lO(b)), which is associated with ZnO. The Fezp3/2 
photoelectron lines include Fez03 as well as a small 
amount of Fe304 (fig. lO(c)). The 01, peaks obtained 
from the as-received surface (fig. 10(d)) are associated 
with adsorbed oxygen contamination and Fe2O3. After 
sputtering, the XPS peaks indicate Fe203 on the Mn-Zn 
ferrite surface. 

Table I1 summarizes various constituents present on 
the Mn-Zn ferrite surface and their relative concen- 
trations before and after sputtering. The relative 
concentration of hydrocarbon contaminant is 70 at. '3'0. 
After sputtering no carbon is evident on the Mn-Zn 
ferrite surface. As with the Ni-Zn ferrite, on the surface 
the concentration of ZnO is less than that of manganese 
oxides, while in the bulk the concentration of ZnO is 
greater than that of manganese oxides. This result is 
consistent with Mn-Zn ferrite chemistry. 

3 



Surface treatment 
in vacuum chamber 

(b) Oxides 

Concentration, 
at. Qo 

Surface 

Bulk I 15.7 114.1 I 70.2 

Surface treatment Concentration, 
in vacuum chamber mol % 

No treatment 36 15 49 

Sputtering 26 7 67 

Friction 
Effect of Metal Activity on Friction 

The relative chemical activity of the transition metals 
(metals with partially filled d-shells) as a group can be 
ascertained from their percentage d-bond character as 
shown by Pauling (ref. 27). The frictional properties of 
metal-metal and metal-ceramic contacts have been shown 
to be related to this character (refs. 28 to 32). The greater 
the percentage of d-bond character, the less active is the 
metal and the lower is the coefficient of friction. 

Sliding friction experiments were conducted with 
ferrite flats in contact with a number of transition metal 
riders. The friction traces with metal-ferrite couples are 
generally characterized by smoothly fluctuating behavior 
with no evidence of stick-slip, but the traces with a very 
chemically active metal such as titanium are characterized 
by stick-slip fluctuating behavior (fig. 11) .  The coef- 
ficients of friction for various metals sliding on ferrite 
were unaffected by load in the range 0.05 to 0.2 N. 

The coefficients of friction for various metals in sliding 
contact with Ni-Zn and Mn-Zn ferrites are presented in 
figure 12 as a function of the d-bond character of the 
transition metal. There appears to be good correlation 
between the coefficient of friction and the chemical 
activity of the transition metal. Titanium, a chemically 
active metal, exhibits a considerably higher coefficient of 

friction in contact with ferrite than does rhodium, a less 
active metal. This result is consistent with the authors’ 
earlier studies conducted with single crystals of Sic,  
diamond, and Mn-Zn ferrite (refs. 29, 31, and 32.). 

The coefficients of friction with single-crystal Mn-Zn 
ferrite (110) plane (fig. 12(b)) are lower than those of the 
hot-pressed, polycrystalline Mn-Zn ferrite. This 
difference in friction may be in accord with effects of 
crystallographic orientation and grain boundary as well 
as impurities contained in the crystals. The 2 

crystallographic plane and direction can play a significant 1 

role in the friction behavior of ferrite (refs. 22 and 24). 
Sliding along the direction that is most closely packed 8 

minimizes adhesion and friction. Note that [llO) (1 10) is 
the slip system of Mn-Zn ferrite. 

The coefficients of friction can also be correlated with 
the free energy of formation of the lowest metal oxides, 
as shown in figure 13. This correlation is consistent with 
the results of Pepper (ref. 32), that is, the shear 
coefficients of the clean metal (Ag, Cu, Ni, and 
Fe)-sapphire contacts correlate with the free energy of 
formation of the lowest metal oxides. The correlation 
shown in figure 13 is consistent with the concept that the 
metal-ferrite bond at the interface is primarily a chemical 
bond between the metal atoms and the large oxygen 
anions in the ferrite surface and that the strength of this 
bond is related to the oxygen-metal bond strength in the 
metal oxide (refs. 32 to 36). 

All the metals shown in figure 12 transferred to the 
surfaces of the ferrites. In general the less active the 
metal, the less transfer to the ferrite. Titanium, having a 
much stronger chemical affinity to the elements of the 
ferrite, exhibited the greatest amount of transfer (refs. 
22, 23, and 31). 

Effect of Oxygen Adsorption on Friction 

Figure 14 shows the coefficients of friction for various 
metals in contact with the ferrites as a function of the 
d-bond character of the metal, Both metal and ferrite 
specimens were exposed to 0 2  gas. The data indicate a 
decrease in friction with an increase in d-bond character. 
The adsorption of oxygen on argon-sputter-cleaned metal 
and ferrite surfaces produces two effects: (1) the metal 
oxidizes and forms a oxide surface layer; and (2) the layer 
increases the coefficients of friction for both Ni-Zn and 
Mn-Zn ferrite-to-metal interfaces. 

The present results are consistent with those shown in 
reference 32. It is suggested in reference 32 that oxygen 
exposures do strengthen metal-sapphire contact and 
increase friction. 

The enhanced bond of the metal oxide to sapphire was 
due to the formation of a complex oxide when metal 
contact was established. The enhanced coefficient of 
friction indicated in figure 14 may be due to the foregoing 
mechanism of bonding. 

t 

4 
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Conclusions 
As a result of the XPS analysis and the sliding friction 

experiments conducted with hot-pressed, polycrystalline 
nickel-zinc and manganese-zinc ferrite surfaces in sliding 
contact with various transition metals, the following 
conclusions were drawn. 

1. Ni2O3 and F e 3 0 4  are present on the Ni-Zn ferrite 
surface in addition to nominal constituents such as NiO 
(NiFezO4), ZnO, and Fe2O3. MnO;! and F e 3 0 4  are 
present on the Mn-Zn ferrite surface in addition to 

2. The coefficients of friction for Ni-Zn and Mn-Zn 
ferrites in contact with various metals are related to the 
relative chemical activity of these metals: the more active 
the metal, the higher is the coefficient of friction. The 
coefficients of friction for the ferrites correlate with the 
free energy of formation of the lowest metal oxide. The 
interfacial bond can be regarded as a chemical bond 
between the metal atoms and the oxygen anions in the 
ferrite surfaces. The adsorption of oxygen on the clean 
metal and ferrite surfaces increases the coefficients of 
friction as a result of the oxide surface layer on both the 
Ni-Zn and Mn-Zn ferrite-to-metal interfaces. 

c 

I -  nominal constituents such as MnO, ZnO, and Fe2O3. 

E 
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National Aeronautics and Space Administration 
Cleveland, Ohio, December 7, 1982 

1 References 

R 

1. Tanaka, K.; et al.: Friction and Wear in the Sliding of VTR Head 
Against Magnetic Tape. I-Contact Force and Frictional Force. J. 
Jpn. SOC. Precis. Eng., vol. 40, no. 7, 1974, pp. 550-556. 

2. Tanaka, K.; et al.: Friction and Wear in the Sliding of VTR Head 
Against Magnetic Tape. 11-Wear of VTR Head Made of a Ferrite 
Single Crystal. J .  Jpn. SOC. Precis. Eng., vol. 40, no. 8, 1974, pp. 

3. Tanaka, K.; Miyoshi, K.; and Murayama, T.: Friction and Wear in 
the Sliding of VTR Head Against Magnetic Tape. 111-Effect of 
Wear on the Output Signal Level. J. Jpn. SOC. Precis. Eng., vol. 
40, no. 9, 1974, pp. 785-792. 

4.  Tanaka, K.; and Miyoshi, K.: Friction and Wear on  Magnetic 
Tape. I-Frictional Behavior. J. Jpn. SOC. Lubr. Eng., vol. 19, 
no. 9, 1974, pp. 645-653. 

5. Tanaka, K.;  et al.: Friction and Deformation of Mn-Zn Ferrite 
Single Crystals. I-Contact and Friction of Ferrite Single Crystals. 
J. Jpn. SOC. Precis. Eng., vol. 41, no. 2, 1975, pp. 148-154. 

6 .  Tanaka, K.; et al.: Friction and Deformation of Mn-Zn Ferrite 
Single Crystals-Frictional Properties and Deformation. Bull. 
Jpn. SOC. Precis. Eng., vol. 9, no. 1, 1975, pp. 27-34. 

7. Tanaka, K.;  et al.: Friction and Deformation of Mn-Zn Ferrite 
Single Crystals-Crack Formation. Bull. Jpn. SOC. Precis. Eng., 
vol. 9, no. 2, 1975, pp. 47-48. 

8. Tanaka, K.; et al.: Abrasive Wear of Mn-Zn Ferrite. I-Effects of 
Abrasive Grain Size and Contact Pressure. J. Jpn. SOC. Precis. 
Eng., vol. 41, no. 9, 1975, pp. 896-902. 

651-657. 

9. Tanaka, K.; et al.: Friction and Deformation of Mn-Zn Ferrite 
Single Crystals. Proceeding of  JSLE-ASLE International 
Lubrication Conference, T. Sakurai, ed., Elsevier Scientific 
Publishing Co., 1976, pp. 58-66. 

10. Miyoshi, K.; Tanaka, K.; and Murayama, T.: Friction and Wear of 
Magnetic Tape.  11-Effects of  Surface Roughness of  
Countersurface on Friction. J. Jpn. SOC. Lubr. Eng., vol. 21, no. 

11. Miyoshi, K.; Tanaka, K.; and Murayama, T.: Abrasive Wear of 
Mn-Zn Ferrite. 11-Effects of Sliding Speed and Abrasive/Carrier 
Fluid Ratio. J. Jpn. SOC. Precis. Eng., vol. 43, no. 4, 1977, pp. 
483-488. 

12. Miyoshi, K.; Tanaka, K.; and Murayama, T.: Abrasive Wear of 
Mn-Zn Ferrite. 111-Deformed Crystalline Layers and Surface 
Cracking. J. Jpn. SOC. Precis. Eng., vol. 43, no. 10, 1977, pp. 

13. Miyoshi, K.; et al.: Tape Lapping of Manganese-Zinc Ferrite 
Crystals. I-Frictional Properties and Abrasiveness of Lapping 
Tapes. J. Jpn. SOC. Precis. Eng., vol. 43, no. 12, 1977, pp. 

14. Carroll, J. F., Jr.; and Gotham, R. C.: The Measurement of 
Abrasiveness of Magnetic Tape. IEEE Trans. Magn., vol. mag-2, 
no. 1 ,  Mar. 1966, pp. 6-13. 

15. Talke, F. E.; and Su, J .  L.: The Mechanism of Wear in Magnetic 
Recording Disk Files. Tribol. Int., vol. 8, no. 1 ,  Feb. 1975, pp. 

16. Kehr, W. D.; Meldrum, C. B.; and Thornley, R. F. M.: The In- 
fluence of Grain Size on  the Wear of Nickel-Zinc Ferrite by 
Flexible Media. Wear, vol. 31,  1975, pp. 109-117. 

17. Tanaka, K.; and Miyazaki, 0.: Wear of Magnetic Materials and 
Audio Heads Sliding Against Magnetic Tape. Wear, vol. 66, 1981, 

18. Hahn, F. W., Jr.: Materials Selection for Digital Recording Heads. 
Proceedings of Wear Materials. Wear 1977, W. A.  Glaeser, K .  C. 
Ludema, and S. K. Rhee, eds., ASME, 1977, pp. 199-203. 

19. Begelinger, A.; and deGee, A.  W. J.: Wear Measurements Using 
Knoop Diamond Indentations. Wear, vol. 43, 1979, pp. 259-261. 

20. Van Groenou, A. Broese; Maan, N.; and Veldkamp, J. D. B.: 
Scratching Experiments on Various Ceramic Materials. Philips 
Res. Rep., vol. 30, no. 5, 1975, pp. 320-359. 

21. Miyoshi, K.: Lapping of Manganese-Zinc Ferrite by Abrasive Tape. 
Lubr. Eng., vol. 38, no. 3,  Mar. 1982, pp. 165-172. 

22. Miyoshi, K.; and Buckley, D. H.: Friction and Wear of Single- 
Crystal Manganese-Zinc Ferrite. Wear, vol. 66, 1981, pp. 157-173. 

23. Miyoshi, K.; and Buckley, D. H.: Friction and Wear of Single- 
Crystal and Polycrystalline Manganese-Zinc Ferrite in Contact 
with Various Metals. NASA TP-1059, 1977. 

24. Miyoshi, K.;  and Buckley, D. H.: Anisotropic Friction and Wear of 
Single-Crystal Manganese-Zinc Ferrite in Contact with Itself. 

25. Wagner, C. D.; et al.: Handbook of X-ray Photoelectron Spectro- 
scopy. Perkin-Elmer, Physical Electronics Division, 1978. 

26. Allen, G. C.; Tucker, P. M.; and Wild, R. K.: Surface Oxidation 
of Nickel Metal as Studied by X-Ray Photoelectron Spectroscopy. 
Oxid. Met., vol. 13, no. 3,  1979, pp. 223-236. 

27. Pauling, L.: A Resonating-Valence-Bond Theory of Metals and 
Intermetallic Compounds. Proc. Roy. SOC. (London), ser. A, vol. 
196, no. 1046, Apr. 1949, pp. 343-362. 

28. Buckley, D. H.: The Metal-to-Metal Interface and Its Effect on 
Adhesion and Friction. J. Colloid Interface Sci., vol. 58, no. 1 ,  
Jan. 1977, pp. 36-53. 

29. Miyoshi, K.; and Buckley, D. H.: Adhesion and Friction of Single- 
Crystal Diamond in Contact with Transition Metals. Appl. Surf. 
Sci., vol. 6 ,  1980, pp. 161-172. 

30. Buckley, D. H.: Friction and Transfer Behavior of Pyrolytic Boron 
Nitride in Contact with Various Metals. ASLE Trans., vol. 21, no. 
2, Apr. 1978, pp. 118-124. 

11, 1976, pp. 756-763. 

1192-1 197. 

1395-1401. 

15-20. 

pp. 289-306. 

NASA TP-1339, 1978. 

5 



31. Miyoshi, K . :  and Buckley, D. H.: Friction and Wear Behavior of 34. McDonald, J .  E.; and Eberhart, J. G.:  Adhesion in Aluminum 
Single-Crystal Silicon Carbide in Sliding Contact with Various Oxide-Metal Systems. AIME Trans., vol. 233, 1965, pp. 512-517. 
Metals. ASLE Trans., vol. 22, no. 3, July 1979, pp. 245-256. 35. Smithells, Colin J.: Metals Reference Book. Vol. 1, Plenum Press, 

32. Pepper, S. V.: Shear Strength of Metal-Sapphire Contacts. 1967. 
J. Appl. Phys., vol. 47, no. 3, Mar. 1976, pp. 801-808. 36. Glassner, A.: The Thermochemical Properties of the Oxides, 

33. Kurkjian, C. R.;  and Kingery, W. D.: Surface Tension at Elevated Fluorides, and Chlorides to 2500 K. ANL-5750, Argonne National 
Temperatures. 111. Effect of Cr, In, Sn, and Ti on Liquid Nickel Laboratory, 1957. 
Surface Tension and Interfacial Energy with A I 2 0 3 .  J. Phys. 
Chem., vol. 60, 1956, pp. 961-963. 

r l on  sputter gun  

CD-81-12770 (a) Spectrometer. 
(b) Specimen holder. 

Figure 1. - Schematic representation of X-ray photoelectron spedr 
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.ometer and f l  *ict ion and wear apparatus. 

6 



(a) Grain boundary structure 
(b) Grain boundaries. pits. and scratches (high magnification). 

Figure 2. - Scanning electron micrographs of chemically etched Ni-Zn ferrite surface- 
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(a) Micrograph. 
(b) Diffraction pattern. 

Figure 3. -Transmission electron micrograph and diffraction pattern of ion-thinned Ni-Zn ferrite, 
showing grain boundaries perpendicular to surface. 
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(a) Micrograph. 
(h) Diffraction pattern. 

Figure 4. -Transmission electron micrograph and diffraction pattern of ion-thinned Ni-Zn ferrite, 
showing grain boundaries not perpendicular to ferrite surface and containing parallel fringes- 
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(a) Micrograph. 
(b) Diffraction pattern. 

Figure 5. -Transmission electron micrograph and diffraction pattern of ion-thinned Ni-Zn ferrite, 
showing different etch patterns 
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Figure 6. - Energy-dispersive X-ray profi le of Ni -Zn ferrite. 
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Figure 7. - XPS survey spectral of Ni -Zn fe r r i te  surfaces. 
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Figure 8. - XPS peaks on  Ni -Zn fe r r i te  surfaces. 
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Figure 9. - XPS survey spectra of Mn-Zn  ferr i te  surtaces. 
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Figure 10. - XPS peaks on M n - Z n  fe r r i te  surfaces. 
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Figure 11. - Fr ict ion traces for metal r iders  s l id ing on N i -Zn  fe r r i te  in vacuum 
(30 nPa). Single-pass sliding; s l id ing velocity, 3 mmlmin;  room temperature. 
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Figure 12. - Coefficients of f r i c t ion  as a funct ion of d-bond 
character of various metals in sl iding contact w i t h  Ni -Zn 
and M n - Z n  ferr i tes in vacuum (30 nPa). Single-pass 
sliding; sl iding velocity, 3 mrnlmin: load, 0.05 to 0.2 N: 
room temperature. 
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Figure 13. - Coefficients of f r i c t ion  as a funct ion of free 
energy of formation of lowest oxide for various metals 
in contact w i th  Ni-Zn and Mn-Zn  ferr i tes in vacuum 
(30 nPa). Single-pass sliding: sl iding velocity. 3 mml 
min: load, 0.05 to 0. 2 N: room temperature. 
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Figure 14. - Effect of adsorbed oxygen on fr ict ion for 
various metals in contact wi th  Ni -Zn and M n - Z n  
ferrites in vacuum (30 nPa). Exposure, loo0 L 
( 1 ~ 1 0 ~  to r r  sec) in oxygen gas; sl iding velocity, 
3 mmlmin; load, 0.05 to 0.2 N; room temperature. 
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